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ABSTRACT

'This paper introduces a contour-based approach to motion
estimation. It is based on first computing motion at image
corners, and then propagating the corner motion estimates along
the principal contours in the image based on a local 2 D motion
assumption. The resu-ts of several experiments are presented. .
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1. Introduction

* -The earliest problem that arises in the analysis of time-

varying images is the detection of moving image elements

(edge, regions) and the computation of the image velocity

(optic flow) of those elements. A variety of computational

schemes have been proposed to solve this problem.f In a ./

recent survey, Ullman [1] broadly classifies these as inten-

sity-based and token-matching schemes.

An important class of intensity-based schemes takes ad-

vantage of the relationship between the temporal and spatial

gradient of any continuous and differentiable image proper-

ty which is invariant to small changes in perspective. For

example, if we assume that the intensity, I, satisfies these

properties, the relationship

-t= uI~ + vIy(1

can be used to determine velocity. Here, I t is the temporal

intensity gradient, I, and I the x and y components of the

spatial intensity gradient, and u and v the x and y compo-

nents of image velocity. Measuring Itf I, , I from an imagex y
sequence establishes a linear constraint on the x and y velo-

city components. A single velocity estimate can be computed

by spatially combining the constraints using e.g., Hough

transforms (2], least-squares methods [3] or minimizationI techniques [4]. All of these techniques suffer froma certain

disadvantages. The Hough-transform and minimization techniques
assume that image velocity is uniform over large parts of



the image, and the least-squares method further assumes that

the constraint equations determined for nearby points are

independent - an assumption that is violated by the spatial

integration required to compute spatial derivatives.

In this paper we develop a contour-based approach to

motion estimation at a small set of image points at which

it is possible, in principle, to unambiguously determine

image velocity. Specifically, corners have the property

that their motion can be directly computed based only on

measurements made at the corner (in practice, of course,

one must examine a small neighborhood of the corner).

Another important property of corners is that they can

be safely regardcd as projections of scene features whose

general appearance is invariant to rigid motion - e.g., an

image corner may be the projection of the vertex of a poly-

hedron, or of a curvature discontinuity on the boundary of

a surface marking. The second step involves propagating

these velocity estimates to a larger number of picture points.

This is based on the assumption that the image motion is

locally a rigid two-dimensional motion. Given this assump-

tion, the velocity at one point on a contour and the normal com-

ponent at a neighboring point can be combined to compute the

actual velocity at the neighboring point.
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2. Estimating motion at corners

The motion of a corner can be computed in a variety of

ways. Section 2.1 describes an approach based on temporal

intensity changes along lines parallel to the sides of

the corner. Section 2.2 discusses a second technique

which combines normal vectors in a small neighborhoodi of

the corner along the contour. It is similar to the velo-

city estimation algorithm in Horn and Schunck [4]. We

should also point out 'that Nagel [5] has recently proposed

a corner velocity estimation algorithm based on a differ-

ential approach (i.e., a Taylor series expansion of the

image function in the neighborhood of the corner truncated

after the second-order terms.).

2.1 A structural approach

This subsection presents a structural approach to cor-

ner motion estimation. We first describe velocity compu-

tation for the case of translation motion, and then con-

sider translation combined with rotation.

Suppose that a corner simply translates from point C 0

to C 1 between two frames t 0 and t 1 (see Figure 1). Let 0'

be a point on the bisector of PC R and let 0'A and 0'B be

lines parallel to C 0P and C 0R, respectively at some unit

distance from C 0P and C 0R. Suppose that I0'AI = I0'BI =

1+m, for some constant m. Finally, assume that the intensity

inside the corner is 1 and outside the corner is 0.
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Now, at time to, the average intensity along line seg-

ments O'A and O'B is

IOA(to) = IO,B(t0) = l/(1+m)

If Ax' and Ay' are the components of the translation in

the directions of the lines O'A and O'B, then

IO,A(t1) = (l+Ax')/(l+m)

IOB(t I ) = (l+Ay')/(l+m)

assuming that m is chosen large enough so that max(Ax',Ay') <

m. Finally, Ax' and Ay' can be computed from

IOA = IO,A(tl) - IO,A(t 0 ) Ax'/(l+m)

'IOB = IO,B(t1) - IoB(t 0 ) = Ay'/(l+m)

Once Ax' and Ay' are computed, the components of the

velocity in the original image coordinate system can be

recovered easily:

[Ax] ECosai Coss [Ax]

Ay] = sins sin8J Ay'

The practical success of this technique depends on our

ability to compute several corner parameters accurately.

These parameters are

1. corner location at to ,

2. corner shape [angles a and 0), and

3. corner contrast (assumed here to be 1)

The computation of these parameters is discussed in Section 4.1.

Next, we extend the previous simple analysis to include rota-

tion as well as translation. We will treat this case as a

:I



translation from C0 to C1 followed by a rotation about C1

through a clockwise angle y (see Figure 2). Since translation

and rotation are specified by a total of three parameters,

we could extend the above analysis using only a third line

segment parallel to either O'A or O'B. Instead, we consider

two pairs of parallel line segments, and compute the displace-

ments in the directions O'A and O'B rather than directly

computing the angle y.

Let Ax't, Ay't be the translational components of the

motion in the O'A and O'B directions, and Ax'r and Ay'r

the corresponding rotational components. Then

Ax't + AX'r = (l+m) AIoA (2.1)

Ay t - Ay' r = (l+m) AIOIB (2.2)

From Figure 3, we see that

Ax' ~Axr -I x~Ax'r -= - aX" (2.3)
l+Ay't 6

where 6 is the distance between the parallel line segments

O'A and CD. Similarly

Ayer Ay'y - Ay"r  (2.4)
I+Ax ' 6

Also

Ax'r - Ax"r = (+m)IIO,A(tl)-ICD(tl)] (2.5)

Aye r - Ay"r = (l+m)IIo,B(tl)-IEF(tl) ]  (2.6)

Substituting (2.5) mid (2.6) into (2.3) and (2.4) and simplify-

ing, we obtain

AX r - CIAy't =C 1  (2.7)

C2 Axt Ay'r = -C2 (2.8)
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where

C (1+m)

6 [IEAtl) - ICD (tl]

C2  (l+m) [I FCt1 I IB(tl)]1

Solving for Ax't and AyIt we obtain

Ax't = (1+m) (AIO A - CIAI,R - C1 (l+C 9 ) (29
t+C1 C2

(l+m)(C2AIoA - CAloB) - C2 (C-) (2.10)

Substituting (2.7) and (2.8) into (2.9) and (2.10), we can also

compute Ax' r and Ay' rf which gives us a complete description

of the motion of the corner.

2.2 A least-squares approach

In this section we show hovw simple least-squares algo-

rithms can be used to compute corner motion. We can rewrite

(1.1) to obtain

V = -It/JVIJ (2.11)

where IVII is the magnitude of the spatial intensity gradient

at that point (JVIi = /-2+i 2 ) and Vn is the projection of thex y
velocity vector V onto the intensity gradient at that point.

We will first consider the case when the velocity is only a

translation, and then consider translation with rotation.

If we assume that the velocities are constant in a small

neighborhood of the corner along the contour, then we can

relate the problem of determining the velocity V at the cor-

ner to that of determining a V to minimize

I' -.



V

E {.(.. - vni) 2 } (2.12)
i 1 -- f

where ni (n ilni2) is the unit normal vector of the ith con-
tour point and Vni is the projection of V onto the intensity

gradient direction at the i th contour point, called the normal

projection for short. By minimizing the error E

we obtain

au + cv = d
(2.13)

cu + bv = e

where

k

i=1 i1

k 2b= 2

i=l

k
c = n n

i=1 ii i2

k
d= E n V

i=1 l

k
e n Ve =7. i2 • n i

i=1

From equation (2.12), we have the velocity estimation

of a turning point

bd-ce

ab-c (2.14)

ae-cdV = - "

ab-c

_-_-_-_-_-_-_-_-_-_-_-_-



Notice that the solutions for u and v are only meaningful when

2
ab-c , which is related to the variance of normal directions, is

high. For a straight line segment, e.g., there is no solution

because the denominators of eqs. (2.13) are zero,

a 2  k 2  k 2 k 2ab-c 2  n n - n )i= i i=l i2 il' i2

1 kn -kn 2 ,knl-n2) 2

1 ~2k 2  1 12
=0

i.e., from a small element of a straight line, the only infor-

mation that one can obtain is the motion component normal to

that line., and motion along this line element cannot be detected.

Corners, however, are just those points where the variance of

normal directions is locally maximal.

Now, consider the case in which the motion of the contour

can be decomposed into a translation with velocity V0 (V x,V y

at the corner (x0 y,0 ) and a rotation around (x0 ,Y0 ) with the an-

gular velocity w, as shown in Figure 4. Note that since we

are only interested in the motion of the corner, we do not ex-

plicitly solve for w, although it would be easy to do so.

We obtain

w x di = Vi - V0 (2.15)

By rewritling this equation, we have

Vi (V 0 x-wdiy (2.16)

VOy +Wdix)

p -.- A
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Fig. 4. Two-dimensional rigid motion.



where d. ,d. are the components of the displacement*- vector
ly ix

d. from point (x01 0  to point (x~i~ on the contour. The
1 1Oiy

normal component of Vis related to d1, w and V0 by

Vni - 1in

=(Vx~d. )n. + (V +wd. )n. (2.17)
Oxwiy ix Qy ix iy

By considering three points on the contour, V0  and V can
Ox Oy

be simply obtained by solving linear equations. In general,

more than three image points are taken and V0 , V are computed
OOy

by minimizing the following square error;

2 =T )V 2
E .i On + O*ny wdix niyd iy nix ni)

We obtain the following least squares solution of VoxVo

C 1  S 11  a1

C 2  S 02 a2

- C3  S 0 1  a3

(2.18)

S 20 C . a1

S11 C2 a2

S 10 C3 a3

I ~ ~~where Vy- 1

S = n r nP d?rpqk ix iY ix iy

n r nprp ~ix iy

U-1l



and

a 1 =s 1 1 1 0 - S2 0 0 1 '

a 2  S 0 2 1 0 -S1 1 0 1 ,

a 3  s S0 1 1 0  loci0 ,

1E xi* ix'

C 2 =Evni* iy

*3 = ni

and 

20 s1 a1

S S11 s02 a2
S S a

10 01 3
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3. Propagation of velocity vectors along image contours

3.1 The local constraint and the propagation formula

Suppose the velocity vectors KOVk at the ends of a contour

A0Ak are known (see Figure 4). Consider a small line segment dS

along the contour A0A1 . Assuming that the motion is a rigid motion

VOs of V., the motion of A0, parallel to A0A1 must equal the

parallel component VlS of the velocity V1 at A1 :

VOs Vls (3.1a)

or

V0 • a = V1 • . (3.1b)

where V0 and V1 are the velocity vectors at the two ends of

the line dS, and dS is the unit vector along dS, the vector

joining A0 to AI . Rewriting this local constraint (eq.3.1b)

into component form, we obtain

V0 •j = (V in + Vt) -s

= V nn - dS + vlt t dS (3.2)

where Vin and Vlt are the normal component and the tangential

component of the velocity vector V1 respectively, and n and

F are the unit vectors in the normal and tangent directions

of the contour at A1 . From Figure 5, we see that

n-d-S cosa and t.dS = cos(n/2-u) = sina so that
(3.3)

V = V tsinx + 
Vn cos(

MI
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Thus, we have that the tangential component is

V1t= (V0s - cosa)/sina (3.4)

where a is the angle between the unit vector --S and the

normal vector n at the point A1 . We also have y=B-a, where

8 is the angle between the x-axis and the normal vector n,

and y is the angle between the x-axis and the line segment dS.

We can propagate the velocity along a contour using eq. (3.4),

because the first projection VOS is known after the previous

propagation and the normal component Vin can be computed by,

e.g., the methods discussed in [31 or [4]. Once V n -s coM--

puted, VI=Vle can be obtained because

V/V +V2
1 in it (3.5)

8 = 8 - arctan Vit/Vin

L1!II
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3.2 Error analysis and a correction technique

From eq. (3.4)the new estimate of the tangent component

Vit is based on the previous projection V0S and on the nor-

mal component Vin at the current propagation point. Differ-

entiating this equation we obtain

avit 3Vit Vit

it V S ls + dVln + aaOSin1 -- (V1n-V0 os CS)
dVo -cota dVn A ( da (3.6)

sinci OS in sn2Csin ci

Note that the error in Vlt depends on the error in the previous

projection (dVOs), the error in the normal component Vin at

the current propagation point (dVin), and the error in the

measurement of the angle a (da).

The result of these various errors is that when the pro-

pagation reaches Ak, the velocity vector Vk attributed to Ak

by the propagation procedure will differ from the velocity vec-

tor originally computed at Ak. Therefore, at the point Ak

we compute the error between the propagation velocity estimate

V' and the original velocity vector Vk and compute the error

AVk - Vk - V

If this error is less than some tolerance, then this propagation

procedure is stopped at point Ak; otherwise a correction proce-

dure is applied. If we consider the error AVk as having been

accumulated in the previous n steps, then the average velocity

error in one step is

MALL
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~j. th
so we have m-Ve as the velocity error at the m

h step and we
propagate this velocity error step by step backward to

corrpct the estimated velocity vector at each point along

the same contour.



4. Experimental results

We applied the corner motion estimation and velocity pro-

pagation algorithms to two sets of motion pictures. Section

4.1 describes the corner motion estimation results, and Sec-

tion 4.2 describes the propagation results.

4.1 Corner motion estimation

The three corner motion models described in Section 2

were applied to two image sequences containing two frames each

(Figures 6-7).

We first describe the application of the structural model

presented in Section 2.1. Corners are "provisionally" detected

using the corner detection algorithm described in Kitchen and

Rosenfeld [ 6]. Next, a small window around each corner is

analyzed to obtain a more accurate description of the corner.

Based on the assumption that the corner locally contrasts with

its surround, a local thresholding procedure (Milgram [ 7 1) is

used to segment the window. The corner is then relocated to a

maximum curvature boundary point in the threshclded window.

The slopes of the line segments meeting at the corner are com-

puted using a one-dimensional (slope) Hough transform procedure

(only slope need be computed since the lines are constrained

to pass through the corner point.) The corners detected by

this procedure are marked with dark crosses in Figures 6a and 7a.

To overcome the effects of various sources of error on the

motion estimation, several quadruples of line segments are used

to compute estimates of Ax' y' x' and AY'r' with the
t' t' aerge.

final motion estimate taken as the average.

i n _71





The results f or the airplane in Figure 6 are displayed in

Table 1. The estimated motion vectors were obtained by the

authors' examination of digital enlargements of the images.

No useful results were obtained for the moving car in Figure 7.

There are several reasons for this:

1. The grey level corners in the car are much more rounded

than the airpland's, and the motion estimates are sensitive

to the corner location; and

2. The spatial resolution of Figure 7 is not high enough to

allow us to place a sufficiently large window around a

corner for segmentation which does not contain some other

image feature.

The least-squares corner motion estimates presented in Sec-

tion 2.2 require that we first compute the normal component of

motion along the contour in the neighborhood of the corner. The

magnitude of the normal component and the components of the unit

normal vector on the x and y axes are

V = -I 1Vf2_ (4.1)

n I I~ (4.2

n2 =I/~ (4.3)
x y

The derivatives (I Iy'1I in (4.1)-(4.3) are approximated as

follows:

.'..~~~ 7717-7 77- . - --



1
1 4 E,= Zmf k+t,i+m,j+l- k+Z,i,j 1n

-I

Ix 4=0 m=0 Ik+1,i+m,j+n-Ik+=,i,j
11 1

it m 1 {I k+l,i+m,j+n-Ik,i+m,j+n4m=0O n=0

The unit of length is the grid spacing interval in each image

frame and the unit of time is the image frame sampling period.

Tables 2 and 3 contain the results of applying both least-

squares corner estimators to the images in Figures 6 and 7,

respectively.
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measured estimated

x y alpha beta u v u V

1 39 93 170.1 213.5 -8.4 -1.5 -1.2 -5.9

2 166 46 264.5 345.6 -0.2 -0.8 -0.2 -1.0

3 166 146 16.4 96.6 -2.7 -1.8 -3.2 -1.5

4 167 87 89.5 185.4 -2.3 -1.6 -1.0 -0.9

5 168 104 175.1 276.6 -1.7 -1.2 -2.1 -0.6

6 212 123 39.2 195.3 -0.7 1.6 -2.7 0.6

7 227 68 9.6 292.6 -1.0 0.7 -1.0 1.3

8 227 124 70.2 353.8 -2.8 1.0 --2.9 1.0

Table 1. Motion vectors for corners in Figure 6.

estimated computed by computed by
(2.14) (2.18)

x y u v U V u V
----------------- ------ --- I-----------------------4--------- ----------------

39 93 -;.2 -5.9 3.1 -2.7 2.7 -0.5
166 46 -0.2 -1.0 -0.1 -0.8 0.1 -0.7

166 146 -3.2 -1.5 -1.2 -0.8 -0.2 -1.7

167 87 -1.0 -0.9 -0.9 -0.8 -1.0 -0.9

168 104 -2.1 -0.6 -1.8 -0.7 -2.4 -0.6

212 123 -2.7 -0.6 -1.7 1.0 -3.8 0.5
227 68 -1.0 1.3 -0.9 1.2 -1.0 0.6

227 124 -2.9 1.0 -2.4 0.1 -3.5 3.7

Table 2. Motion vectors for turning points of Figure 6
(airplane)
(1) Under local translation assumption.
(2) Under local planar motion assumption.
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estimated computed by computed by
eq. (2.14) eq. (2.18)

x y U v U v U v

9 29 -1.5 -0.2 -1.4 -0.03 -1.4 -0.1

19 9 -1.5 -0.3 -1.3 -0.1 -1.4 -0.1

61 46 -1.8 -2.2 -1.1 -1.7 -1.8 -2.4

56 46 -1.6 -2.2 -1.5 -1.5 -0.8 -2.7

23 52 -1.6 -1.0 -1.0 -1.3 -1.0 -1.3

13 41 -1.2 -0.6 -1.2 -0.5 -1.2 -0.6

21 24 -1.8 -1.5 -1.4 -0.5 -1.6 -1.8

39 33 -1.8 -1.5 -1.7 -1.1 -1.4 -2.5

41 40 -1.3 -1.5 -2.1 -1.2 -0.4 3.0

Table 3. Motion vectors for turning points of Figure 7
(traffic).
(1) Under local translation assumption.
(2) Under local planar motion assumption.
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4.2 Velocity propagation

We applied the propagation technique to the two image

sequences displayed in Figures 6 and 7.

The propagation technique was implemented as follows:

1) Velocity vectors are first determined at a set of

"1corner" points in the first frame by the least-square

corner motion estimator which assumes that the corner

motion is a 2-D translation.

2) The velocity vector at the corner is propagated along

the contours that meet at the corner until a second

corner point is encountered. The ccntours are followed

by a very simple maximum gradient technique. A velo-

city vector is not computed at every pixel on the con-

tour, but only at every kth pixel, to reduce the error

in x.

3) When the terminating corner point is reached, the propa-

gation is stopped and the error velocity vector is com-

puted. If this error is greater than a preset tolerance,

then the error velocity vector is back-propagated along

the same contour.

The results of the propagation are displayed in Figures 8-9.
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5. Summary

We have presented a contour-based approach to motion estimation

based on first estimating motion at image corners and then propa-

gating these motion estimates along image contours. One potential

advantage of such an approach over others such as [3-4I is that

motion information is not integrated across the boundaries of

moving objects, but only along such boundaries. Since very often

the only reliable source of motion information is at object bounda-

ries (when, for example, object interiors are homogeneous) it is

important that motion estimation techniques yield accurate motion

estimates at boundaries.

The examples presented in Section 4 both consisted of a single

object moving across a homogeneous background. The propagation

technique presented in Section 3 would need to be modified to be

applicable to more complex image sequences containing multiple moving

objects and occlusions so that motion information is not propagated

from one object to another.
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